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We examine the plane elastic problem of an infinite isotropic wedge in
which the modulus of elasticity is a continuous function of the coordi-
nates r, 0, The wedge is subjected to a force applied at the apex. We
examine in particular the problem of the half-plane. It is established
that there exists a definite and rather wide class of functions E(r, 0)
to which there corresponds a so-called radial distribution of stresses
(0g =7 .5 = 0). This distribution differs from that in the wedge and
half-plane of constant modulus only by the stress o, (in particular cases
there is no difference at all).

1. Equation for the modulus of elasticity. We examine an in-
finite elastic wedge with an apex angle equal to 8, + B, in which.Young’s
modulus E and Poisson’s ratio v are continuous functions of the coordi-
nates r, 8. Here @ is measured from the x-axis, which in general does
not coincide with the axis of symmetry. Let the given body be in a state
of generalized plane stress or plane strain under the action of a force
applied at the apex (Fig. 1). The components of the force, referred to
a unit thickness, we denote by P, P_; we use the usual notation for the
components of stresses, strains, and displacements.

As is known from the classical linear theory of elasticity, for an
isotropic wedge of constant E, v, there exists a radial distribution of
stresses (see, e.g. [11])

5 =(Acosd+ Bsin0) =, Gy=Tro=0 (1.1)

where A, B are coefficients that are determined by the equilibrium of a
portion of the wedge cut out by an arc at an arbitrary radius r
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Certain results in the plane problem for
a body with a variable modulus of elasticity
H were obtained in the works of Goletskiy [2],
: r Konchkovskiy [ 3 1, Teodoresku and Predeleanu
/'\ ‘ g [4,5]1, and others. In the latter two papers
a solution was given for a half-plane with a
{z P % modulus of elasticity in the form of an ex-
ponential function of the coordinates and
Fig. 1, with a periodically repeating load applied
on the boundary. The solution of the general-
ly formulated problem for the wedge and half-plane has evidently not yet
been found.

N Y

Rather than set ourselves the goal of solving the problem in the
general case, for arbitrary E, v, we formulate the problem in the follow-
ing way: Determine the conditions which Young’s modulus and Poisson’s
ratio must satisfy in order that a radial distribution of stresses (o =
r.o= 0) exists. In this task we shall start from the equations of the
linear theory of elasticity.

It is necessary to distinguish two cases — plane strain and general-
ized plane stress. If in the first case one sets 55 =r 5= 0 and intro-
duces new elastic constants

__E __v
T —a =13

E (1.3)

then the basic system of the equations of equilibrium of the elastic
body may be written in the form:

%:——%’—-—u, %—}—rg—l;—v:O
From the first three equations we find
o, = 110 (1.5)

r ’ Y 0 ’
uzsf_égdr_}.u, v=—3[—’-"%,)-+gf—ﬁf%)dr]d0+v (1.6)

where f(0) is an unknown function, and u’, v’ are "rigid body"
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displacements. From the fourth equation (1.4) we obtain the condition of
compatibility of the system of three equations for the two unknowns u, v,
which after elementary transformations takes on the form

* f . f 9 f @
m T =0 (1.7)

Hence, the stress distribution will be radial in all cases in which
E’, p satisfy Equation (1.7). Also entering into this equation is the
unknown function f of the single variable 6. This function must satisfy
the equilibrium conditions (1.2). In the case of generalized plane stress
we obtain the same Expressions (1.6) and Equations (1.7), but it is
necessary to replace E’; u by E, v

2. Case of constant Poisson’ s ratio. If the modulus E is a
function of r, 6 while v is a constant, then Equation (1.7) becomes
0 f 9 f

® f / -
a—eif——*—}?—r p F-—'-UJJF—E—-—-O (21)

where in the case of plane strain p = v/(1 —:v) and in the case of
generalized plane stress g =-v.

We look first for the class of solutions of Equation (2.1) in the form
of an arbitrary function of the distance r times a function of the polar

le 6
e E =E,(r)Ey(0) (2.2)

Substituting into (2.1) and separating the variables, we obtain
f\ [ [y, 1 1\ mr—1 1
(&) +em=0 elg)++(g)+5 =0 @3

where n is an arbitrary number, real, imaginary, or zero. Integrating,
we obtain for n £ 0

Eie- = A cosnb 4 Bsinnd, E‘i_ = Cyr% + Cyr—ati~uu (2.4)
— Ey 1
B ryoemmm (s#tety) (2.9)

Here A, B, Cl, C, are arbitrary constants. For a given a

n=¥ (1—a) T+ pa (2.6)

The quantity E; may be an arbitrary function of 6 (however it is to
be understood that the Expression (2.5) has physical meaning only when
it is positive because we always have E > 0).
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If the material has a modulus of elasticity whose analytic form is
some particular case of Formula (2.5), then a radial distribution of
stresses obtains in the wedge in the form

5,z~—(A cosnf - Bsinnb), Gy = Trg =0 (2.7

The coefficients A, B are found from the conditions of equilibrium

(1.2).

The number n will be real for ~ 1/u < a < 1 and imaginary for a > 1
and a < — 1/pu. For imaginary n the cosine and sine in (2.7) must be
changed to the hyperbolic cosine and sine of argument inf. In Formula
(2.5) the quantity a may alse be a complex number, namely

a=——1“’“+az —atl—t = 1=

B .
m o 8i (2.8)

where § is an arbitrary positive number. The corresponding Young's
modulus is given by the function —
E, S
= Cicos (0lnr) +Casin(dln r)

(2.9)

The stress o is determined by the Formula (2.7), in which
n= 1/ por 4 LT (2.10)

For v = 0, g = 0 the modulus which insures a radial stress distribu-
tion is obtained as the limit of Expression (2.5) (for C; #: 0)

E = Eyr— (h=V1=0a) (2.11)

In addition to (2.5) there also exists the modulus (corresponding to
n=0)

_1yt
E=ElCr+ Cor V) {2.12)

for which one obtains a radial distribution of the form
E
6p=—-(4+BO), CGo=Tre=0 (2.13)

For constant E (E; = const, C, =-a = 0 in Formla (2.5)) we obtain
the well known solution (1.1).

If the modulus E is the sum of expressions of the form of (2.5) for
various a, then the stress distribution will no longer be radial (since
it is then not possible to determine f(6) from (2.1)). However, special
cases may be given where the function 1/E is in the form of the sum of
products of the inverses of (2.5) and where the stress distribution is
radial (valid for particular cases of the wedge and the load).
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Case 1. The modulus of elasticity is given in the form of the function
_1 N ’ _ak+1_L —1
E —E, [Cmr +Car ¥ 4 3 (Cor™ + Carr +) cos n,,e] (2.14)
k=1

Here 0 is measured from the x axis, which coincides with the symmetry
axis of the wedge (8, = 8, = B), C;;, C,, are constants that are not
simultaneously zero, Eg is an even func-
tion of @ and moreover such that E >0 in A
the wedge rezion oy

=V (1 —ax) (1 +pox) (2.15)

The stress distribution taused by a
force directed along the symmetry axis
(Py = 0) is given by the formula lr

AE,
r

op=—, G=Tu=0  (2.16) Fig. 2.

The coefficient A is determined from the first of conditions (1.2);
the second is satisfied identically. For 8 = #/2 we obtain the solution
for a half-plane under the action of a normal force P, (Fig. 2). If the
quantity E, is constant in Formula (2.14), then the solution has the
form

6=k,  Gi=0=0 (247)

Level lines of stress o, = const (isobars) have the form of circular
arcs whose centers are at the point of application of the force (Fig.2).

Case 2. The modulus of elasticity is given in the form

1= Dsinms]” (2.48)

N
1 —a
E =E, [(Clo" + Czo"*‘)6 + kz (Clkrak + Cor
=1
Here 0 is measured from the symmetry axis of the wedge, E; is an odd
function of 0 but such that E > 0 over the entire wedge region. The

stress distribution caused by a force P_ normal to the wedge axis

(P, =0) is given by Formla (2.16).

The first of the equilibrium conditions (1.2) is satisfied idenmtically,
while the second serves to determine the constant A.

If there are terms with a;, > 1 and @ < 1/k in the sums (2.14) and
(2.18), then the corresponding sines and cosines should be changed to
hyperbolic functions in the argument inf.
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3. Stress distribution vhen E obeys a pover law. We examine
the case of a modulus of elasticity varying according to the law

E = Enx™ = E,r®cos™y (3.1)
here ® is an arbitrary real number, positive or negative, whole or func-
tional (x is measured from an axis which in general is not perpendicular
to the symmetry axis of the wedge). We have a particular case of the
Expression (2.5), in which C; =1, C; = 0, a=—m, Eg = E_ cos®™; the

constant
n=V{A+m) (1 —pm) (3.2)

will be real for — 1 < m < 1/u and imaginary for # < ~.1 and » > 1/u.
The stress o, is given by the formula

cos™ (A cosnb 4 B sinnb) (3.3)

r

r =

We obtain for the coefficients A, B the equations

A S cosnf cos™t16d0 + B S sinnf cosm+10df = — P,

(3.4)
A S cosnfcos™0sinbdl + B S sin nf cos™0sin6db = — Py )
(the limits of integration are —~ 8, and f3,).
In the case of imaginary n = in;
6 = 20 (oo, - Buinny) (3.5)

We consider two particular cases of the half-plane.

Case 1. The modulus of elasticity is proportional to the distance
from the boundary
E=Ez, m=1, o=—1
On the basis of Formula (3.3) and Equations (3.4) we find

6, = — TP _%5Y () 5,P, cosnb + P, sin nb) (V20 =p) (3.6

T sininn/2)

Since Poisson’s ratio varies between the limits 0 to 0.5 for various
materials, we have for generalized plane stress that 1 < n <+/2= 1.4142,

Likewise for plane strain 0 <u < 1 and 0 < n <2, where n= 0 cor-
responds to an incompressible material (v = 0.5). In the latter case
Formula (3.6) loses validity because the expression for E should be con-
sidered as a particular case of Expression (2.12), to which there
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corresponds the stress (2.13) or

5 = — L (Pt 2Pyf) S
Hence it is seen that the stress distribution under the action of a
normal load (P, = 0) in the case of plane strain and an incompressible
material is obtained in exactly the same form as in the case of a homo-
geneous isotropic half-plane. We note that this also takes place when the
modulus of elasticity depends on the coordinates in the following manner:

17-1
E = F, cosB [Clr - Cor® ] (3.8)

In this case it is easily verified by the use of Formula (2.14) and
by determining the constants 4 and B from the eguilibrium conditions
(1.2) that for Py= 0

B=0

In the case of generalized plane stress and an incompressible material,
n=1and

5, = — 0.75 P, 28 (3.9)

r

§o

Level lines of stress (isobars) have an oval
shape (Fig. 3). g

Case 2. The modulus of elasticity is in-
versely proportional to the distance

g =fa
Tz

The expression for E is a particular case
of (2.12)
E_
Ci=1, C;=0, Eg=

cos B vz

For a wedge whose x axis coincides with

the symmetry axis (8, = 8, =-B), we obtain |%
0
1 P P =

- | -= Y A
o=~ 5w 5+ 7] T
B // \\
(g (B) = Se....e de) (3.10) / \
0 7 \\
'I h.' \
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As the angle 8 approaches #/2, the quantity g grows without bounds
and we obtain for the half-plane

P.C
S = — == (3.11)
Hence the theory (at least linear) leads to the conclusion: For a
half-plane with a modulus of elasticity which is inversely proportional
to the distance from the boundary and with a constant Poisson’s ratio,
a force directed along the boundary will not give rise to any stresses.
Stresses from a normal force vary according to the same law as the
modulus E so that the isobars o, = const are straight lines parallel to
the boundary (Fig. 4).
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