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We examine the plane elastic problem of an infinite isotropic sedge in 
which the modulus of elasticity is a continuous function of the coordi- 
nates r, 8. The redge is subjected to a force applied at the apex. Ve 
examine in particular the problem of the half-plane. It is established 
that there exists a definite and rather wide class of functions E(r. 8) 
to Vhicb there corresponds a so-called radial distrlbUtiOB of stresses 
(c7& z-r* = 0). This distribution differs from that in the sedge and 
half-plane of constant modulus only by the stress ur (in particular cases 
there is no difference at all). 

1. Equation for the modulus of elasticity. We examine an in- 

finite elastic wedge with an apex angle equal to @I + & in which *Young’s 

modulus E and Poisson’s ratio Y are co~ti~uo~ functions of the coordi- 

nates r, 8. Here B is measured from the x-axis, which in general does 

not coincide with the axis of symetry. Let the given body be in a state 
of generalized plane stress or plaue strain under the action of a force 

applied at the apex (Fig. 1). ‘lbe coqxments of the force, referred to 

a unit thickness, we denote by Px, P ; we use the usual notation for the 

components of stresses, strains, andydisplacemsats. 

As is known from the classical linear theory of elasticity, for an 

isotropic wedge of constant E, u, there exists a radial distribution of 

stresses (see, e.g. [ 1 I) 

where A, B are coefficients that are determined by the equilibGxn of a 

portion of the wedge cut out by an arc at an arbitrary radius P 
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Certain results in the plane problem for 
a body with a variable modulus of elasticity 
were obtained in the works of Goletskiy [21,< 
Konchkovskiy 13 I, Teodoresku and Predeleanu 
14,5 I, and others. In the latter two papers 
a solution was given for a half-plane with a 
modulus of elasticity in the form of an ex- 
ponential function of the coordinates and 

Fig. 1, with a periodically repeating load applied 
on the boundary. The solution of the general- 

ly formulated problem for the wedge and half-plane has evidently not yet 
been found. 

Rather than set ourselves the goal of solving the problem in the 
general case, for arbitrary E, Y, we formulate the problem in the follow- 
ing way: Determine the conditions which Young's modulus and Poisson's 
ratio must satisfy in order that a radial distribution of stresses (06 = 

're = 0) exists. In this task we shall start from the equations of the 
linear theory of elasticity. 

It is necessary to distinguish two cases - plane strain and general- 

ized plane stress. If in the first case one sets 38 = r rB = 0 and intro- 
duces m elastic constants 

V El=+-+, - CL= 1-v (1.3) 

then the basic system of the equations of equilibrium of the elastic 
body may bewrittenin the form: 

Fran the first three equations we find 

where f(0) is an unknown function, and u', u' are "rigid body" 
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displacements. From the fourth equation (1.4) we obtain the condition of 

compatibility of the system of three equations for the two unknowns u, V, 

which after elementary transformations takes on the form 

Hence, the stress distribution will be radial in all cases in which 

E’j p satisfy EQuation (1.7). Also entering into this equation is the 

unknown function f of the single variable 8. Ibis function must satisfy 

the equilibrium conditions (1.2). In the case of generalized @lane stress 

we obtain the same Expressions (1.6) and Equations (l.?), but it is 

necessary to replace E’j p by E, v 

2. Case of constant Poisson's ratio. If the modulus E is a 

function of r, 8 while v is a constant, then Equation (1.7) becomes 

(2-l) 

where in. the case of plane strain g =.v/(l -:v) and in the case of 
generalized plane stress g =.v. 

We look first for the class of solutions of Equation (2.1) in the form 

of an arbitrary function of the distance r times a function of the polar 

angle 8 
E = Er (f) Ee (e) (2.2) 

Substituting into (2.1) and separating the variables, we obtain 

f ” ( ) L$f=O 
E, ’ EQ ’ p &)“++(&)‘+y&=O (2.3) 

where n is an arbitrary nunber, real, imaginary, or zero, Integrating, 
we obtain for n f 0 

f 
- = A cos no + B sin u0, 
% 

-& = Cira + ~~r-a+l--~/~ 
r ~2.4) 

(2.5) 

Here A, B, C,, C, are arbitrary constants. For a given a 

n=V(1-a)(l+W) (2.6) 

lbe quantity Ee may be an arbitrary function of 8 (however it is to 

be understood that the Expression (2.5) has physical meaning only when 

it is positive because we always have E > 0). 
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If the material has a modulus of elasticity whose 
some particular case of Formula (2.51, then a radial 
stresses obtains in the wedge in the form 

analytic form is 
distribution of 

(2.7) 

lhe coefficients A, B are found from the conditions of equilibrium 
W21. 

The number n will be real for - l/r( < 0 < 1 and imaginary for a > 1 
and a < - l/p. For imaginary n the cosine and sine in (2.7) must be 
changed to the hyperbolic cosine and sine of argument id. In Formula 
(2.5) the quantity a msy also be a complex number, namely 

1-P Z=--.--..- q + 64 -a+1_-+-- 1-P &i 

2P (2.8) 

where 6 is an arbitrary positive number. The corresponding Young's 
modulus is given by the function 

E@ 
1-g 

E= -r2ti 
Cl ~0s (6 In r) + Ca sin (& In r) (2.9) 

The stress or is determined by the Formula (2.71, in which 

n= @a+ (1 + PI’ 
4P 

(2.10) 

For v I-O, p Iz; 0 the modulus which insures a radial stress distribu- 
tion is obtained as the limit of Gpression (2.5) (for C, f.0) 

E = E&r-= (n = JK=z) (2.21) 

In addition to (2.5) there also exists the modulus (corresponding to 
n= 0) 

E = EB (C,r + C,r- +)-I f2.12) 

for which one obtains a radial distribution of the form 

For constant E (EB = const, C, =,u = 0 in Formula 
the well known solution (1.1). 

(2.13) 

(2.5)) we obtain 

If the modulus E is the sum of expressions of the form of (2.5) for 

various a, then the stress distribution will no longer be radial (since 
it is then not possible to determine f(6) from (2.1)). However, special 
cases may be given where the function l/E is in the form of the sum of 
products of the inverses of (2.5) and where the stress distribution is 
radial (valid for particular cases,of the wedge and the load). 
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Case 1. lhe modulus of elasticity is given in the form of the function 

E = & clor + c2,r- + + 5 iClkra" + CZkr --0k+1- +) Cos nkfi]-l (2.14) 

k=l 

Here 8 is measured from the x axis, which coincides with the syzzsetry 
axis of the wedge @I = & = /3), C,,, C,, are constants that are not 

simultaneously zero, E, is an even func- 
tion of 8 and moreover such that E >O in 
the wedge region 

nk = v (1 - ak) (1 + pak) (2.15) 

The stress distribution caused by a 
force directed along the syuzzetry axis 
(Pr = 0) is given by the formula 

i X 

4l 
G=y, Qg = z,g = 0 (2.16) Fig. 2. 

‘he coefficient A is determined from the first of conditions (1.2); 
the second is satisfied identically. For /3= n/2 we obtain the solution 
for a half-plane under the action of a normal force Pz (Fig. 2). If the 
quantity E, is constant in Formula (2.141, then the solution has the 
form 

Rx 
0,=-r, 50 = c&.0 = 0 (2.17) 

Level lines of stress uv = const (isobars) have the form of circular 
arcs whose centers are at the point of application of the force (Fig.2). 

Case 2. 'lhe modulus of elasticity is given in the form 

E = Ee[(Cd + C,,r$)O + k~l(cl~rak + CZkr-ak+l-+)sin nkg]-' (2.18) 

Here 8 is measured from the syzzzetry axis of the wedge, E, is an odd 
function of 8 but such that B > 0 over the entire wedge region. 'Ihe 
stress distribution caused by a force P, normal to the wedge axis 

(Px =-0) is given by Formula (2.16). 

'Ihe first of the equilibrium conditions (1.2) is satisfied identically, 
while the second serves to determine the constant A. 

If there are terms with ok > 1 and ak < l/g in the SUM (2.14) and 
(2.18), then the corresponding sines and cosines should be changed to 
hyperbolic functions in the argument inf3. 
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3. Stress distribution when B obeys a power law. We examine 
the case of a modulus of elasticity varying according to the law 

E z&x"'= E,rmcosm~ (3.1) 

here I is an arbitrary real number, positive or negative, whole or func- 
tional (x is measured from au axis which in general is not perpendicular 
to the symaetry axis of the wedge). We have a particular case of the 
Expression (2.5), in which C, = 1, C, = 0, a =.-:I, Eo = E, COST; the 

constant 

u=V(l+m)(l-pm) (3.2) 

will be real for -:l < I < l/c( and imaginary for m < -.l and n > l/p. 

The stress or is given by the formula 

Qr - ros:"Q cosng + B sinno) 

We obtain for the coefficients A, B the equations 

AS 
cosnecos~+le de + B 1 sin ne COP+~ 8 de = - P, 

A i cosnecosmesinede + B s sindcoP8sin8dB = - Py 

(the limits of integration are --& and B,). 

In the case of imaginary n = inI 

q=+(A coshnle + BBtiah7tle) 

We consider two particular cases of the half-plane. 

(3.3) 

(3.4). 

(3.5) 

Case.1. ‘Ihe modulus of elasticity is proportional to the distance 
from the boundary 

E=E,x, m=l, a=--1 

On the basis of Formula (3.3) and Equations (3.4) we find 

Q =_ ,1.+1" ccsu 
r -(0.5~2P, COSTS + P, sin ne) 

slnlnn/2) c 
(n g v-1) (3.6) 

Since Poisson's ratio varies between the limits 0 to 0.5 for various 
materials, we have for generalized plane stress that 1 G n < 62= 1.4142. 

Likewise for plane strain 0 <,u < 1 and 0 < n < \/2, where n = 0 cor- 
responds to an incompressible material (V = 0.5). In the latter case 
For&a (3.6) loses validity because the expression for E should be con- 
sidered as a particular case of Expression (2.12), to which there 
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corresponds the stress (2.13) or 

(3.7) 

Hence it is seen that the stress distrilmtion under the action of a 

normal load (P = 0) in the case of plane strain and an incompressible 

material is obtained in exactly the same form as in the case of a homo- 

geneous isotropic half-plane. We note that this also takes place when the 

modulus of elasticity depends on the coordinates in the following manner: 

[ 

1 -1 

E = El cos 9 C,r +- C2ry 3 (3.3) 

In this case it is easily verified by the use of Formula (2.14) and 
by determining 

(1.2) that for 

the constants 4 and B from the equilibrium conditions 
P,= 0 

B= 0 

In the case 
n=-1 and 

of generalized plane stress and an incompressible material, 

or = - 0.75 P,=p 

Level lines of stress (isobars) hare an oval 

shape (Fig. 3). 

Case 2. The modulus 01 elasticity is in- 

versely proportional to the distance 

E&Z!_ 
X 

The expression for E is a particalar case 

of (2.12) 

C I== I: Ca = 0, EB = 5 

For a wedge whose x axis coincides with 

the syrnaetry axis (& =.& =.e), we obtain 

1 
Or = - 2r cos fj II 

>+-$I 
p I 

(g(P) = “s0t.&3) (-3.10) 
0 

trr: 
Fig. 2. 

1% 
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As the angle /3 approaches n/2, the quantity g grows without bounds 

and we obtain for the half-plane 

P 
a,.= __z 

2K.X 
(3.11) 

Hence the theory (at least linear) leads to the conclusion: For a 

half-plane with a modulus of elasticity which is inversely proportional 

to the distance from the boundary and with a constant Poisson’s ratio, 

a force directed along the boundary will not give rise to any stresses. 

Stresses from a normal force vary according to the same law as the 

modulus E so that the isobars or = const are straight lines parallel to 

the boundary (Fig. 4). 
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